
Task 6. Multithreading Models 

Task: read information below about types of multithreading models and explain differences 

between them 

Some operating system provide a combined user level thread and Kernel level thread facility. 

Solaris is a good example of this combined approach. In a combined system, multiple threads 

within the same application can run in parallel on multiple processors and a blocking system call 

need not block the entire process. Multithreading models are three types 

 Many to many relationship. 

 Many to one relationship. 

 One to one relationship. 

Many to Many Model 

The many-to-many model multiplexes any number of user threads onto an equal or smaller 

number of kernel threads. 

The following diagram shows the many-to-many threading model where 6 user level threads are 

multiplexing with 6 kernel level threads. In this model, developers can create as many user threads 

as necessary and the corresponding Kernel threads can run in parallel on a multiprocessor 

machine. This model provides the best accuracy on concurrency and when a thread performs a 

blocking system call, the kernel can schedule another thread for execution. 

 

Many to One Model 



Many-to-one model maps many user level threads to one Kernel-level thread. Thread 

management is done in user space by the thread library. When thread makes a blocking system 

call, the entire process will be blocked. Only one thread can access the Kernel at a time, so 

multiple threads are unable to run in parallel on multiprocessors. 

If the user-level thread libraries are implemented in the operating system in such a way that the 

system does not support them, then the Kernel threads use the many-to-one relationship modes. 

 

One to One Model 

There is one-to-one relationship of user-level thread to the kernel-level thread. This model 

provides more concurrency than the many-to-one model. It also allows another thread to run when 

a thread makes a blocking system call. It supports multiple threads to execute in parallel on 

microprocessors. 

Disadvantage of this model is that creating user thread requires the corresponding Kernel thread. 

OS/2, windows NT and windows 2000 use one to one relationship model. 



 

Difference between User-Level & Kernel-Level Thread 

S.N. User-Level Threads Kernel-Level Thread 

1 User-level threads are faster to create and 

manage. 

Kernel-level threads are slower to 

create and manage. 

2 Implementation is by a thread library at the 

user level. 

Operating system supports creation 

of Kernel threads. 

3 User-level thread is generic and can run on 

any operating system. 

Kernel-level thread is specific to 

the operating system. 

4 Multi-threaded applications cannot take 

advantage of multiprocessing. 

Kernel routines themselves can be 

multithreaded. 

 


	Task 6. Multithreading Models
	Many to Many Model
	Many to One Model
	One to One Model
	Difference between User-Level & Kernel-Level Thread

